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Abstract—In this paper the problem of sliding mode control
(SMC) for a class of uncertain (TS) fuzzy descriptor systems with
time-varying delay is studied. An integral-type sliding function is
proposed and a delay-dependent criterion is developed in terms
of linear matrix inequality (LMI), which ensures the sliding
mode dynamics to be robustly admissible with generalized H2
disturbance rejection level. Moreover, a SMC law is established
to satisfy the reaching condition of the specified sliding surface
for all admissible uncertainties and time-varying delay. The
developed results are tested on a representative example to
illustrate the theoretical developments.

I. INTRODUCTION

The class of descriptor (singular) systems has recently re-
ceived great interest from mathematical and control theorists to
properly describe the behaviour of some practical systems such
as large-scale systems, economic systems, power systems and
other areas [4]. Time delay phenomena constitute an intrinsic
characteristic of several practical systems. Some of them can
be modelled by the class of descriptor systems with delays.
It should be pointed out that the robust stability problem
for descriptor systems is much more complicated than that
for state-space systems because it involves not only stability
and robustness, but also regularity and impulse immunity
for continuous descriptor systems or causality for discrete-
time descriptor systems simultaneously [2], [16], [17], [18].
Recently, the (TS) fuzzy model has been extended to deal
with descriptor nonlinear systems with time delay and many
scholars have paid much attention to deal with fuzzy descriptor
systems and various problems of analysis and synthesis have
been treated [1], [7], [17].

As the dual of the robust control problem, the generalized
H2 (L2−L∞) control for dynamic systems has been extensively
investigated. As H∞ , generalized H2 has been well recognized
to be most appropriate for systems with noise input, whose
stochastic information is not precisely known. The objective
of this problem is to design a controller such that the resulting
closed-loop system is stable and ensures that the peak value
of the controlled output is often required to be within a certain
range [1], [9], [14]

It is well known that the sliding-mode control (SMC) is
an effective method to achieve robustness and invariance
to matched uncertainties and disturbances on the sliding
surface[3], [5], [10], [12]. The SMC strategy has been suc-
cessfully applied to many kinds of systems due to its inherent

attractiveness, for example, easy realization, fast response,
good transient response and insensitivity to plant parameter
variation or external disturbance. The SMC strategy has been
successfully applied to many kinds of systems, such as, un-
certain time-delay systems, stochastic systems, and Markovian
jump systems [6], [11], [13], [15]. However, to the authors’
knowledge, there is little related results reported on SMC of
(TS) singular systems [8]. By using LMI technique, the present
paper extends the sliding mode control to (TS) fuzzy descrip-
tor systems which may contain the un-modelled dynamics,
varying parameters and disturbance.

The remaining parts of this paper are organized as follows.
Section 2 formulates the system description and presents some
preliminaries.The integral sliding mode controller design is
presented in section 3. Illustrative example is given in section
4. Finally a conclusion is provided in section 5.
Notations. The notation X > 0 (respectively, X ≥ 0) means
that the matrix X is real symmetric positive definite (re-
spectively, positive semi-definite). L2 is the space of integral
vector over [0,∞). The L2 norm over [0,∞) is defined as
||g||22 =

∫
∞

0 gT (t)g(t)dt. The symbol (∗) stands for matrix block
induced by symmetry, sym(X) stands for X +XT .

II. SYSTEM DESCRIPTION AND PRELIMINARIES

The (TS) fuzzy dynamic model is described by fuzzy
IF-THEN rules, which locally represent linear input-output
relations of nonlinear systems. A continuous fuzzy descriptor
model with delay and parameter uncertainties can be described
by :

Eẋ(t) =
r

∑
i=1

µi(θ)
{

Ai(t)x(t)+Ahi(t)x(t−h(t))+Bi(u(t)

+ fix(t))+Bwi(t)w(t)
}

z(t) =
r

∑
i=1

µi(θ)Cix(t)

x(t) = ϕ(t), t ∈ [−hM,0].
(1)

where µi(θ) =
∏

s
j=1 F i

j (θ j)

∑
r
i=1 ∏

s
j=1 F i

j (θ j)
, i = 1,2, · · · ,r, are the normal-

ized membership functions, x(t)∈Rn is the state, u(t)∈Rm is
the control input, w(t) ∈Rw is the external disturbance input,
fi(t,x(t)) represents the system non-linearity and any model
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uncertainties in the system including external disturbances,
z(t) ∈ Rs is the controlled output; F i

j ( j = 1 . . .s) are fuzzy
sets, θ = [θ1, . . . ,θs] is the premise variable vector. The delay
h(t) is time-varying and satisfies

0≤ h(t)≤ hM, ḣ(t)≤ hd . (2)

where hM are constants representing the bounds of the delay,
hd is a positive constant. ϕ(t) is a compatible vector-valued
initial function in [−hM,0] representing the initial condition
of the system. The system disturbance, w(t), is assumed to
belong to L2[0,∞). The matrix E ∈ Rn×n may be descriptor
and assume that rank(E) = q≤ n. Ai(t) = Ai+∆Ai(t), Ahi(t) =
Ahi + ∆Ahi(t) and Bwi(t) = Bwi + ∆Bwi(t) are time-varying
system matrices. Ai, Ahi, Bi, Bwi and Ci are constant matrices
with appropriate dimensions. Note that the normalized weights
µi(θ) satisfy

µi(θ)≥ 0, i = 1,2, · · · ,r
r

∑
i=1

µi(θ) = 1. (3)

Without loss of generality, we introduce the following assump-
tion for technical convenience.

1) ∆Ai(t), ∆Ahi(t) and ∆Bwi(t) are the unmatched uncer-
tainties satisfying[

∆Ai(t) ∆Ahi(t) ∆Bwi(t)
]
= MiF(t)

[
Ni Nhi Nwi

]
,

(4)

where Mi, Ni and Ndi are known real constant matri-
ces and F(t) is unknown time-varying matrix function
satisfying FT (t)F(t)≤ I.

2) The matrices Bi, i = 1,2, · · · ,r are assumed to satisfy
B1 = B2, · · · ,Br = B.

3) The matched nonlinearities fi(x) satisfies the inequality

fi(x)≤ ηi(x) (5)

where ηi(x) are non-negative known vector-valued func-
tions.

4) The exogenous signal, w(t) is bounded.
First of all, we recall some definitions.
Consider an unforced linear descriptor system with delay
described by

Eẋ(t) = Ax(t)+Ahx(t−h(t)), 0≤ h(t)≤ hM

x(t) = ϕ(t), t ∈ [−hM,0].
(6)

Definition 1: [4] System (6) is said to be admissi-
ble if it is regular (det

(
sE−A

)
6= 0), impulse-free (

deg
(

det
(

sE−A
))

= rank(E)) and stable.
Definition 2: The open-loop fuzzy descriptor system (6) is

said asymptotically stable with generalized H2 performance if
the open-loop system is asymptotically stable and under the
zero initial condition, the L2-L∞ norm of the open-loop transfer
function Tzw(s) from external disturbance w(t) to controlled
output z(t) satisfies

||Tzw(s)||L2−L∞
= sup

06=w(t)∈L2

||z(t)||∞
||w(t)||2

< γ (7)

where γ is a given positive scalar.

III. INTEGRAL SLIDING MODE CONTROLLER DESIGN

SMC design involves two basic steps. The first one is to
design an appropriate switching surface such that the sliding
mode dynamics restricted to the surface is admissible with
generalized H2 disturbance rejection level γ . In the second
step an SMC law is synthesized to guarantee that the sliding
mode is reached and the system states maintain in the sliding
mode thereafter.

A. Integral sliding mode surface

The integral sliding-mode control completely eliminating
the matched-type non-linearities and uncertainties of (1) while
keeping s = 0.
In this work, the following integral sliding surface is consid-
ered:

s(x, t) =MEx(t)−M
(

Ex0 +
∫ t

0

r

∑
i=1

µi

{(
Ai +BKi

)
x(θ)

+Ahix(θ −h(θ))dθ

)
(8)

where Ki ∈Rm×n is real matrix to be designed and M ∈Rm×n

is designed to satisfy that MB is nonsingular. According to
SMC theory, when the system trajectories reach onto the
sliding surface, it follows that s(x, t) = 0 and ṡ(x, t) = 0.
Therefore, from ṡ(x, t) = 0, the equivalent control law can be
established as

us = (MB)−1M
r

∑
i=1

µi

{(
∆Ai(t)+BKi

)
x(t)

+∆Ahi(t)x(t−h(t)))+Bwi(t)w(t)
}

−
r

∑
i=1

µi fi(x(t)) (9)

Substituting (9) into (1), we obtain the following sliding mode
dynamics:

Eẋ(t) =
r

∑
i=1

µi(θ)
{

Ai(t)x(t)+Ahi(t)x(t−h(t))+Bwi(t)w(t)
}

z(t) =
r

∑
i=1

µi(θ)Cix(t)

(10)

where M= I−B(MB)−1M and

Ai(t) = Ai +∆Ai(t), Ai = Ai +BKi, Ahi(t) = Ahi +∆Ahi(t),

Bwi(t) = Bwi +∆Bwi(t), Bwi =MBwi, Mi =MMi,
(11)[

∆Ai(t) ∆Ahi(t) ∆Bwi(t)
]
= MiF(t)

[
Ni Nhi Nwi

]
.

(12)

B. Sliding Mode Dynamics generalized H2 analysis

In this subsection, we develop a delay-dependent sufficient
condition that ensure for sliding mode dynamics (10) to be
robustly admissible with generalized H2 performance.

Theorem 3.1: Let γ , hM and hd given positive scalars.
The fuzzy descriptor system (10) is regular, impulse free and



asymptotically stable with generalized H2 norm bound γ , if a
non-singular matrix P exists, some matrices Q1 > 0, Q2 > 0,
S > 0, of appropriate dimensions and positive scalars εi such
that the following set of LMIs holds:

ET P = PT E ≥ 0 (13)
Φi Bwi

√
hMAiS PT Mi εiNi

∗ −γI
√

hM BT
wiS 0 εiNwi

∗ ∗ −S 0 0
∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ −εiI

< 0 (14)

[
−ET P CT

i
∗ −γI

]
< 0, (15)

where

Φi =


Φ11i PT Ahi +

1
hM

ET SE 0

∗ −(1−hd)Q1−
2

hM
ET SE

1
hM

ET SE

∗ ∗ −Q2−
1

hM
ET SE


Φ11i = Q1 +Q2 + sym(PT Ai)−

1
hM

ET SE

Ai =
[
Ai Ahi 0

]T
, Bwi =

[
BT

wiP 0 0
]T

Ni =
[
Ni Nhi 0

]T
, Mi =

[
MT

i P 0 0
]T

Proof: The proof of this theorem is divided into two parts.
The first one is concerned with the regularity and the impulse-
free characterizations, and the second one treats the stability
property of system (10). Since rank(E) = q≤ n, there always
exist two non singular matrices M and N ∈ Rn×n such that

E = MEN =

[
Iq 0
0 0

]
(16)

Set

Ai = MAiN =

[
Ai11 Ai12
Ai21 Ai22

]
, Ahi = MAhiN

[
Ahi11 Ahi12
Ahi21 Ahi22

]
,

P= M−1PN =

[
P11 P12
P21 P22

]
.

(17)

Using the fact that P is non-singular, it is easy to see from (13)
and (17) that P11 > 0, P12 = 0 and P22 is also non-singular.
From (14), it is easy to see that the inequality

sym(PT Ai)−
1

hM
ET SE < 0 (18)

holds. Pre- and post-multiplying (18) by NT and N, respec-
tively, we obtain[
? ?
? sym(PT

22Ai22)

]
< 0 (19)

where ? will not be used in the following development. Hence,
we can deduce that A22 is non-singular. Therefore, descriptor

time-delay system (10) is regular and impulse free for any
time-delay h(t) satisfying (2).
Now, let us choose the following Lyapunov-Krasovskii func-
tional as

V (xt) =V1(t)+V2(t)+V3(t)

V1(t) = xT (t)ET Px(t)

V2(t) =
∫ t

t−h(t)
xT (s)Q1x(s)ds+

∫ t

t−hM

xT (s)Q2x(s)ds

V3(t) =
∫ 0

−hM

∫ t

t+θ

ẋT (s)ET SEẋ(s)dsdθ

(20)

The derivative along the trajectories of (10) satisfies that

V̇1(t) = 2xT (t)PT Eẋ(t) = 2xT (t)PT
( r

∑
i=1

µi(θ)
{

Aix(t)

+Ahix(t−h(t))

V̇2(t) = xT (t)Q1x(t)− (1− ḣ(t))xT (t−h(t))Q1x(t−h(t))

+ xT (t)Q2x(t)− xT (t−hM)Q2x(t−hM)

≤ xT (t)(Q1 +Q2)x(t)− (1−hd)xT (t−h(t))Q1x(t−h(t))

− xT (t−hM)Q2x(t−hM)

V̇3(t) = hM ẋT (t)ET SEẋ(t)−
∫ t

t−hM

ẋT (s)ET SEẋ(s)ds

= hM ẋT (t)ET SEẋ(t)−
∫ t−h(t)

t−hM

ẋT (s)ET SEẋ(s)ds

−
∫ t

t−h(t)
ẋT (s)ET SEẋ(s)ds

(21)

According to Jensen Lemma we have

V̇3(t)≤−
1

hM
γ1ET SEγ1−

1
hM

γ2ET SEγ2 (22)

where γ1 = x(t−h(t))− x(t−hM) and γ2 = x(t)− x(t−h(t)).
Define ξ (t) =

[
xT (t) xT (t−h(t)) xT (t−hM)

]T . Then, we
have

V̇ (xt)≤
r

∑
i=1

hiξ
T (t)

(
Φi +hMAiSAT

i

)
ξ (t) (23)

Hence, V̇ (xt)≤−α‖ξ (t)‖2 which implies that nominal singu-
lar system (10), with w(t) = 0 is asymptotically stable.
Let us now prove that system (10) has the generalized H2
performance. For this purpose, consider the following perfor-
mance index:

J0 =V (x(t))− γ

∫ t

0
wT (s)w(s)ds (24)

where V (x(t)) is defined as in (20). For any non-zero w(s) ∈
L2, t > 0 and zero initial state condition ϕ(t)= 0, t ∈ [−hM,0],
we have

J0 =V (x(t))−V (0)− γ

∫ t

0
wT (s)w(s)ds

=
∫ t

0
V̇ (x(s))− γwT (s)w(s)ds

(25)



Define ζ (t) =
[
ξ T (t) wT (t)

]T . Following the same proce-
dure as used above, we get

V̇ (x(t))− γwT (t)w(t)≤
r

∑
i=1

hi(θ)ζ
T (t)Ψiζ (t) (26)

From (14), it follows that Ψi < 0, which implies that J0 < 0.
Therefore, we can obtain the following inequality

xT (t)ET Px(t)≤V (x(t))< γ

∫ t

0
wT (s)w(s)ds (27)

On the other hand, from (15) it yields γ−1zT (t)z(t)−EP < 0
which, in turn, leads to

zT (t)z(t)≤ γxT (t)ET Px(t)≤ γV (x(t))

< γ
2
∫ t

0
wT (s)w(s)ds≤ γ

2
∫

∞

0
wT (s)w(s)ds

(28)

Taking the maximum value of ||z(t)||2∞, we have ||z(t)||2∞ <
γ2||w(t)||22 for any 0 6=w(t)∈ L2 which means that system (10)
is delay-dependent asymptotically stable with generalized H2
norm bound γ . This completes the proof.

C. Sliding Mode Dynamics generalized H2 synthesis

Given all the system matrices in (1). Based on the previous
results, we focus on this section to determine the gain Ki
in the switching surface function of (8) such that the sliding
mode dynamics (10) is robustly admissible with generalized
H2 performance.

Theorem 3.2: Let hM , hd and γ given positive scalars.
Then, the sliding mode dynamics (10) is robustly admissible
with H2 performance γ , for any delay h(t), satisfying (2), and
any tuning parameters σ , if there exists a non-singular matrix
X , symmetric positive-definite matrices Q̃1, Q̃1, S̃ and some
positive scalars εi, i = 1, · · · ,r such that the following LMIs
hold:

EX = XT ET ≥ 0 (29)

ϒi =


Φ̃i B̃wi

√
hMÃi Ñi εiM̃i

∗ −γI
√

hM BT
wi NT

wi 0
∗ ∗ σ2S̃−σ sym(X) 0 εi

√
hM Mi

∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ −εiI

< 0

(30)

Γi =

[
−XT ET C̃T

i
∗ −γI

]
< 0, i, j = 1, · · · ,r (31)

where

Φi =

Φ1i AhiX +ES̃ET 0
∗ −(1−hd)Q̃1−2ES̃ET ES̃ET

∗ ∗ −Q̃2−ES̃ET


Φ1i = sym(AiX +BFi)+ Q̃1 + Q̃2−

1
hM

ES̃ET , C̃i =CiX

(32)

Ãi =
[
AiX +BFi AhiX 0

]T
, B̃wi =

[
BT

wi 0 0
]T

M̃i =
[
MT

i 0 0
]T

, Ñi =
[
NiX NhiX 0

]T
.

(33)

The stabilising controller gains are given by Ki = FiX−1

Proof: Under the conditions of Theorem 3.2, a feasible
solution satisfies the condition −σ sym(X)+σ2S̃ < 0 which
implies that X is nonsingular.
On another hand, we note for any σ > 0 that

0≤ (X−σ S̃)T S̃−1(X−σ S̃) = XT S̃−1X−σ sym(X)+σ
2S̃

(34)

which implies that

−XT S̃−1X ≤−σ sym(X)+σ
2S̃ (35)

Let P=X−1, Yi =KiX , Q̃l =XT QlX (i= 1,2) , and S̃=XT SX .
Considering (35) and checking a congruence transformation to
(29), (30) and (31) by P, diag

{
P,P, I, I, I, I, I

}
and diag

{
P, I
}

,
respectively, the inequalities (13), (14) and (15) hold.

D. SMC law synthesis

Now, we are in position to synthesize a SMC law, by which
the trajectories of the uncertain fuzzy singular time-delay
systems (1) can be driven onto the pre-specified switching
surface s(t) = 0 in a finite time and then are maintained there
for all subsequent time.

Theorem 3.3: Consider the uncertain singular time-delay
system (1). Suppose that the switching surface function is
given by (8), then the trajectories of system (1) can be driven
onto the switching surface s(t) = 0 in a finite time by the
following SMC law:

u(t) =
r

∑
i=1

µi(θ)
(
Kix(t)−αi

s(t)
‖s(t)‖

)
(36)

where

αi = λ +ηi(x)+‖
(
MB

)−1
MMi‖

{
‖Nix(t)‖+‖Nhix(t−h(t))‖

+‖Nwiw(t)‖
}
+‖
(
MB

)−1
MBwi‖‖w(t)‖

(37)

Proof: Choose M under the condition of MB is nonsin-
gular. Consider the following Lyapunov function:

Vs(t) =
1
2

sT (t)
(
MB

)−1s(t) (38)

According to (8), we have

ṡ(t) =M
r

∑
i=1

µi

{(
∆Ai(t)−BKi

)
x(t)+∆Ahi(t)x(t−h(t)))

+Bwi(t)w(t)+B
(

u(t)+ fi(x(t))
)}

(39)



Thus, taking the derivative of Vs(t) and considering the above
equation, we have

V̇s(t) =sT (t)
(
MB

)−1ṡ(t)

=sT (t)
(
MB

)−1
M

r

∑
i=1

µi

{
∆Ai(t)x(t)

+∆Ahi(t)x(t−h(t)))+Bwi(t)w(t)
}

+ sT (t)
(

u(t)+
r

∑
i=1

µi
(

fi(x(t))−Kix(t)
))

≤‖s(t)‖
r

∑
i=1

µi

{
‖
(
MB

)−1
MMi‖(

‖Nix(t)‖+‖Nhix(t−h(t))‖+‖Nwiw(t)‖
)

+‖
(
MB

)−1
MBwi‖‖w(t)‖+ηi(x)

}

+ sT (t)
(

u(t)−
r

∑
i=1

µiKix(t)
)

(40)

Substituting (36) into (40), we have

V̇s(t) =−λ‖s(t)‖< 0, ∀‖s(t)‖ 6= 0 (41)

Then the system trajectories converges to the predefined slid-
ing surface and is restricted to the surface for all subsequent
time, thereby completing the proof.

IV. NUMERICAL EXAMPLE

To illustrate the merit and effectiveness of our results, we
consider the following nonlinear time delay system borrowed
from [17]

(
1+(a+δa)cos(θ(t))

)
θ̈(t) =−(b+δb) θ̇

3(t)

+(c+δc)θ(t)+(ch +δch)θ(t−h(t))

+d(u(t)+ fi(t,x(t)))

(42)

where the range of θ̇(t) is assumed to satisfy |θ̇(t)|< φ , φ = 2,
ch = 0.8, u(t) is the control input and w(t) is the disturbance
input. For simulation purposes, we set a = 1, b = e = 1,
c = 1 and d = 1. As in [17], the time-delay system (42) can
be expressed exactly by a (TS) fuzzy descriptor withy the
following parameters :

E =

1 0 0
0 1 0
0 0 0

 , A1 =

0 1 0
0 0 1
c −b(φ 2 +2) a−1

 ,
A2 =

0 1 0
0 0 1
c 0 −a−1−aφ 2

 , A3 =

0 1 0
0 0 1
c 0 a−1

 ,
Ahi

 0 0 0
0 0 0
ch 0 0

 , B =

0
0
d

 , Bwi =

0
0
e

 ,
Ci =

[
0.5 0 0

]
, i = 1,2,3.

µ1 =
x2

2(t)
φ 2 +2

, µ2 =
1+ cos(x1(t))

φ 2 +2
,

µ3 =
φ 2− x2

2(t)+1− cos(x1(t))
φ 2 +2

When we assume that δa(t) = α∆(t)a and δch(t) = α∆(t)ch,
the uncertain matrices can be described as (4) with

Mi =

0
0
α

 , N1,3 =
[
0 0 a

]
, N2 =

[
0 0 −a(φ 2 +1)

]
First, we consider the case where α = 0.25 and the time-
varying delay is given as h(t) = 1.2+0.1sin(t), and a straight-
forward calculation gives hM = 1.3 and hd = 0.1.

Our aim in this work is to design a SMC law u(t) as given
in (36) such that the closed-loop system is robustly stable with
generalized H2 performance.
Set M=

[
0.3 0.2 1

]
. Theorem (3.3) produces a feasible so-

lution to the corresponding LMIs with the following controller
gains

K1 =
[
−2.2383 3.78 −2.0092

]
,

K2 =
[
−2.2206 −2.2258 4.1739

]
,

K3 =
[
−2.2383 −2.22 −2.0092

]
,

(43)

Let fi(t,x(t)) = 0.3sin(x1(t))x1(t), i = 1,2,3, and w(t) =
0.5

1+ t2 . By setting λ = 0.35, the SMC law can be designed
according to (36)-(37) and the simulation results are de-
picted in figures (1(a))-(1(c)) with initial condition x(0) =[
1.5 −0.5 1

]T . To prevent the control signals from chat-
tering, we replace sign s(t)

‖s(t)‖ with s(t)
0.05+‖s(t)‖ .

Figure (1(a)) plots the evolution of the system states and Figure
(1(b)) depicts the control input vector. The response of s(t) is
given in Figure (1(c)). It is observed from Figure 1(a) that
the state trajectories of the system all converge to the origin
quickly. The system can be stabilized by the proposed method
and the reaching motion satisfies the sliding reaching condition
in spite of the time-varying delay, uncertainties and matched
input. Figure (1(d)) shows the state trajectories of the closed-
loop system without a sliding mode term. From this figure,
we can see the effectiveness of the sliding mode term, which
is used to compensate the effect of unknown input.
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(a) States of the closed-loop system.
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(c) Switching surface function s(t).
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(d) States without a sliding mode term.

V. CONCLUSION

Complete results have been developed for robust sliding
mode control of a class of continuous (TS) fuzzy descriptor
systems with time-varying delay and parameters uncertain-
ties. Without resorting to the decomposition and equivalent
transformation of the sliding mode dynamics, the question
of robust admissibility with generalized H2 performance is
considered and a new delay-dependant LMI-based criterion is
derived. Moreover, a SMC control law is designed such that
the reaching condition is satisfied and the chattering can be
reduced. The feasibility and the effectiveness of theoretical
developments has been verified by a numerical example.
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